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Abstract

The contributions of the initial temperature distribution j and source disturbance f to the temperature ®eld T in
the hyperbolic heat conduction are related to that of the initial rate of temperature change c. This uncovers the
structure of the temperature ®eld and signi®cantly simpli®es the development of solutions of hyperbolic heat-

conduction equations. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Heat waves in various conduction domains are gen-
erated by initial, boundary and source disturbances,
and are controlled by the hyperbolic heat conduction

equation. Mathematically, they are characterized by
solutions of initial-boundary value problems in the
form of8>>>><>>>>:

Tt

t0
� Ttt � a2DT� f �M, t�; O� �0, �1�

g�T, Tn� j@O� h�t�; �0, �1�
T�M, 0� � j�M �, Tt�M, 0� � c�M �; O

�1�

if all thermophysical material properties are assumed

to be constant. Here t is the time, T the temperature,
t0 the thermal relaxation time, a 2=a/t0 with a as the
thermal di�usivity, M denotes a point in the space
domain O with the boundary @O, D the Laplacian, f, g,

h, j and c are functions, Tn the normal derivative of
T, Tt=@T/@t, and Ttt=@2T/@t 2, etc. This, with various
applications of heat waves in various ®elds, has given

rise to a considerable body of literature on the solution

of (1), mainly for a one-dimensional case with a linear

function g. Refs. [1±11] obtained either analytical or

numerical solutions of (1) for some g and h to examine

features of heat waves due to boundary disturbances.

Wilhelm and Choi [12] developed a solution to study

heat waves due to an initial disturbance j of a delta-

like temperature distribution centered on a line. Works

in Refs. [13±17] devoted to solutions of (1) to observe

characteristics of heat waves due to some source dis-

turbances f. The features of heat waves revealed

include the sharp wavefront, thermal shock, thermal

resonance, re¯ection, refraction and transmission, etc.

The readers are referred to Refs. [18±24] for some

excellent reviews and discussions of this important

topic.

The solution domain O considered in previous

works is mostly restricted to in®nite, semi-in®nite, and

one-dimensional. The known solutions of (1) are for

some speci®c O, f, g, h, j and c. The analytical

method used is mainly integration transformation

including Fourier and Laplace transformations. When

a ®nite domain is considered, the analysis becomes an

intricate matter as disturbances travel as a wave while

dissipating and re¯ecting o� the boundaries. Due to

the complicated re¯ection and interaction of waves,

multi-dimensional heat waves would contain richer fea-

tures. The interaction among waves due to various

boundary, initial and source disturbances would also
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lead to much richer features. To develop solutions of
(1) for various O, f, g, h, j and c is thus of consider-
able importance to reveal new features of heat waves

which ®nd applications in various ®elds. This
requires, however, large amounts of e�ort. The motiv-
ation for the present work comes from the desire to

reveal the solution structure of (1) to reduce such
e�ort. In particular, we develop two solution struc-
ture theorems for the case of a linear function g.

Note that commonly-used Dirichlet, Neumann and
Robin boundary conditions are the special cases of a
linear function g.

2. Solution structure

As the e�ect of h can be transformed to the e�ect of

source term through a homogenization of boundary
conditions, we only need to search the solution struc-
ture of problem8>>>><>>>>:

Tt

t0
� Ttt � a2DT� f �M, t�; O� �0, �1�

L�T, Tn� j@O� 0; �0, �1�
T�M, 0� � j�M �, Tt�M, 0� � c�M �; O

�2�

where L(T, Tn) represents linear functions of T and Tn,
L(T, T )v@O=0 denotes homogeneous boundary con-

ditions.
Applying the principle of superposition to (2) yields

T�M, t� � T1�M, t� � T2�M, t� � T3�M, t�, �3�

where T1(M, t ), T2(M, t ) and T3(M, t ) are the sol-
utions of8>>>><>>>>:

Tt

t0
� Ttt � a2DT; O� �0, �1�

L�T, Tn� j@O� 0; �0, �1�
T�M, 0� � 0, Tt�M, 0� � c�M �; O,

�4�

8>>>><>>>>:
Tt

t0
� Ttt � a2DT; O� �0, �1�

L�T, Tn� j@O� 0; �0, �1�
T�M, 0� � j�M �, Tt�M, 0� � 0; O,

�5�

and8>>>><>>>>:
Tt

t0
� Ttt � a2DT� f �M, t�; O� �0, �1�

L�T, Tn� j@O� 0; �0, �1�
T�M, 0� � 0, Tt�M, 0� � 0; O,

�6�

respectively. Now we proceed to prove two theorems
relating T2 and T3 to T1. In the process of deriving the

two theorems, a commonly-used assumption is made
that the order of di�erentiation is interchangeable for
some high-order partial derivatives of T with respect

to the time and space coordinates. While the continuity
of the associated high-order partial derivatives forms
the su�cient condition for such interchange, it is not

the necessary condition. Therefore, the interchange of
the order of di�erentiation could still be valid even in
the wave-front region where some high-order partial

Nomenclature

an coe�cient
a 2 a/t0
bn coe�cient

c1 constant
c2 constant
c (n )1 coe�cient

c (n )2 coe�cient
f function
g function

h function
l thickness
L linear function
M point

t time
T, T1, T2, T3 temperature

Tn normal derivative of temperature T
W solution function
x coordinate

Greek symbols
a thermal di�usivity

gn variable
D Laplacian
t variable
t0 thermal relaxation time

j function
c function
O space domain

@O boundary of O
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derivatives of T could be discontinuous (the dissipating
or damping feature of hyperbolic heat-conduction

equations would hinder the appearance of such discon-
tinuity). As both the necessary and su�cient condition
is not available in mathematics, it appears not possible,

at the present, to state what are the conditions that T
should possess in order to be able to interchange the
order of di�erentiation. However, this assumption

appears valid for solutions of hyperbolic heat-conduc-
tion equations because the two theorems give rise to
the same solution as that obtained by the Fourier

method (see Section 3).

2.1. Theorem 1

Theorem 1. Let Wc (M, t ) denote the solution of (4).
The solution of (5) can be written as

T2�M, t� �
�
1

t0
� @

@ t

�
Wj�M, t�: �7�

As Wc (M, t ) is the solution of (4), we have8>>>>>>>>>>>><>>>>>>>>>>>>:

1

t0

@

@ t
Wj�M, t� � @ 2

@ t2
Wj�M, t� � a2DWj�M, t�;

O� �0, �1�

L

�
Wj�M, t�, @

@n
Wj�M, t�

������
@O

� 0; �0, �1�

Wj�M, 0� � 0,
@

@ t
Wj�M, 0� � j�M �; O:

�8�

Hence,

1

t0

@

@ t
T2 � @ 2

@ t2
T2 ÿ a2DT2

� 1

t0

@

@ t

��
1

t0
� @

@ t

�
Wj�M, t�

�

� @
2

@ t2

��
1

t0
� @

@ t

�
Wj�M, t�

�

ÿa2D
��

1

t0
� @

@ t

�
Wj�M, t�

�

� 1

t0

�
1

t0

@

@ t
Wj�M, t� � @ 2

@ t2
Wj�M, t� ÿ a2DWj�M, t�

�

� @

@ t

�
1

t0

@

@ t
Wj�M, t�� @ 2

@ t2
Wj�M, t�ÿa2DWj�M, t�

�

� 0,

which indicates that T2 in (7) satis®es the equation of
(5).

Also,

L

�
T2,

@

@n
T2

�
� L

��
1

t0
� @

@ t

�
Wj�M, t�,

@

@n

��
1

t0
� @

@ t

�
Wj�M, t�

��

� 1

t0
L

�
Wj�M, t�, @

@n
Wj�M, t�

�

� @

@ t
L

�
Wj�M, t�, @

@n
Wj�M, t�

�
,

and

L

�
T2,

@

@n
T2

������
@O

� 1

t0
L

�
Wj�M, t�, @

@n
Wj�M, t�

������
@O

� @

@ t
L

�
Wj�M, t�, @

@n
Wj�M, t�

������
@O

� 1

t0
L

�
Wj�M, t�, @

@n
Wj�M, t�

������
@O

� @

@ t

(
L

�
Wj�M, t�, @

@n
Wj�M, t�

������
@O

)
� 0,

in which (8) has been used. This indicates that the T2

in (7) satis®es the boundary condition of (5).

Finally,

T2�M, 0� �
�
1

t0
� @

@ t

�
Wj�M, t� jt�0

� 1

t0
Wj�M, 0� � @

@ t
Wj�M, 0� � j�M �,

by (8). Also,

@

@ t
T2�M, 0� � @

@ t

��
1

t0
� @

@ t

�
Wj�M, t�

������
t�0

�
�
1

t0

@

@ t
Wj�M, t� � @ 2

@ t2
Wj�M, t�

������
t�0

� a2DWj�M, t� jt�0� a2D�Wj�M, t� jt�0� 0,

by (8). Therefore, the T2 in (7) also satis®es the initial

conditions of (5).

2.2. Theorem 2

Theorem 2. Let Wc (M, t ) denote the solution of (4).
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The solution of (6) can be written as

T3�M, t� �
�t
0

Wft �M, tÿ t�dt, �9�

where

ft � f �M, t�:

As Wc (M, t ) is the solution of (4), we have8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

1

t0

@

@ t
Wft �M, tÿ t� � @ 2

@ t2
Wft �M, tÿ t�

� a2DWft �M, tÿ t�; O� �0, �1�

L

�
Wft �M, tÿ t�, @

@n
Wft �M, tÿ t�

������
@O

� 0; �0, �1�

Wft �M, tÿ t� jt�t� 0,
@

@ t
Wft �M, tÿ t� jt�t

� f �M, t�; O:

�10�

Therefore,

1

t0

@

@ t
T3 � @ 2

@ t2
T3 ÿ a2DT3 � 1

t0

@

@ t

�t
0

Wft �M, tÿ t�dt

� @ 2

@ t2

�t
0

Wft �M, tÿ t�dtÿ a2D
�t
0

Wft �M, tÿ t�dt

� 1

t0

��t
0

@Wft �M, tÿ t�
@ t

dt�Wft �M, tÿ t�
�����
t�t

#

� @

@ t

��t
0

@Wft �M, tÿ t�
@ t

dt�Wft �M, tÿ t�
�����
t�t

#

ÿ a2D
�t
0

Wft �M, tÿ t�dt

� 1

t0

�t
0

@Wft �M, tÿ t�
@ t

dt�
�t
0

@ 2Wft �M, tÿ t�
@ t2

dt

� @Wft �M, tÿ t�
@ t

�����
t�t
ÿa2D

�t
0

Wft �M, tÿ t�dt

�
�t
0

�
1

t0

@

@ t
Wft �M, tÿ t� � @ 2

@ t2
Wft �M, tÿ t�

ÿ a2DWft �M, tÿ t�
�

dt� f �M, t� � f �M, t�,

which indicates that the T3 in (9) satis®es the equation
of (6).

Also,

L

�
T3,

@

@n
T3

������
@O

� L

��t
0

Wft �M, tÿ t�dt,

@

@n

�t
0

Wft �M, tÿ t�dt
������
@O

�
�t
0

L

�
Wft �M, tÿ t�,

@

@n
Wft �M, tÿ t�

������
@O

dt � 0,

in which (10) has been used. Therefore, the T3 in (9)
satis®es the boundary condition of (6).
Finally,

T3�M, 0� �
�0
0

Wft �M, tÿ t�dt � 0,

and

@

@ t
T3�M, t� jt�0�

��t
0

@

@ t
Wft �M, tÿ t�dt

�Wft �M, tÿ t� jt�t
������

t�0
� 0,

by (10). Therefore, the T3 in (9) also satis®es the initial
conditions of (6).

3. Applications

Two theorems proven in this paper relate the sol-
ution of (2) to that of (4) which is much easier to

solve. They are also valid for Cauchy problems (initial
value problems). To illustrate their applications and
compare with other methods, we use both the Fourier

method and two theorems to solve the one-dimensional
initial-boundary value problem8>>>><>>>>:

Tt

t0
� Ttt � a2Txx � f �x, t�; �0, l � � �0, �1�

T�0, t� � T�l, t� � 0; �0, �1�
T�x, 0� � j�x�, Tt�x, 0� � c�x�; �0, l �,

�11�

whose solution represents the temperature distribution

in an in®nitely-wide solid slab of thickness l.

3.1. The solution by the Fourier method

3.1.1. The c-initiated solution: Wc (x, t )
For the problem
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8>>>><>>>>:
Tt

t0
� Ttt � a2Txx; �0, l � � �0, �1�

T�0, t� � T�l, t� � 0; �0, �1�
T�x, 0� � 0, Tt�x, 0� � c�x�; �0, l �,

�12�

which governs the c-contribution. By taking the

boundary conditions into account, let

T�x, t� �
X�1
n�1

Tn�t� sin
npx
l
: �13�

Substituting this into the equation of (12) yields

d2Tn

dt2
� 1

t0

dTn

dt
�
�
npa
l

�2

Tn � 0: �14�

The solution of (14) can be easily found as

Tn�t� � eÿ�t=2t0��an cos gnt� bn sin gnt�, �15�

where an and bn are constants to be determined by the

initial conditions,

gn �
1

2t0

������������������������������
4t20

�
npa
l

�2

ÿ1
s

, �16�

and

sin gnt �
�

sin gnt if gn 6� 0
t if gn � 0:

�17�

We thus have

T�x, t� �
X�1
n�1

eÿ�t=2t0��an cos gnt� bn sin

gnt� sin
npx
l
:

�18�

Applying the ®rst initial condition T(x, 0)=0 leads to

X�1
n�1

an sin
npx
l
� 0, �19�

which requires

an � 0, n � 1, 2, . . . : �20�

Hence,

T�x, t� �
X�1
n�1

eÿ�t=2t0�bn sin gnt sin
npx
l

, �21�

and

Tt�x, t� �
X�1
n�1

bn

�
ÿ 1

2t0
sin gnt

� gn cos gnt
�

eÿ�t=2t0� sin
npx
l

,

�22�

where

gn �
�
gn if gn 6� 0
1 if gn � 0:

�23�

Applying the second initial condition Tt (x, 0)=c(x )
yields

X�1
n�1

bngn sin
npx
l
� c�x�, �24�

which requires

bn � 2

lgn

�l
0

c�x� sin
npx
l

dx, n � 1, 2, . . . : �25�

Finally, we have

T�x, t� �
X�1
n�1

 
2

lgn

�l
0

c�x� sin
npx
l

dx

!
eÿ�t=2t0� sin

gnt sin
npx
l
:

�26�

3.1.2. The j-initiated solution: T2(x, t )
For the problem8>>>><>>>>:
Tt

t0
� Ttt � a2Txx; �0, l � � �0, �1�

T�0, t� � T�l, t� � 0; �0, �1�
T�x, 0� � j�x�, Tt�x, 0� � 0; �0, l �,

�27�

which governs the j-contribution, let

T�x, t� �
X�1
n�1

Tn�t� sin
npx
l
: �28�

Such a solution satis®es two boundary conditions in
(27). A substitution of (28) into the equation in (27)
leads to (15) again for Tn (t ). Hence,

T�x, t� �
X�1
n�1

eÿ�t=2t0��an cos gnt

� bn sin gnt� sin
npx
l
:

�29�

Applying the ®rst initial condition T(x, 0)=j(x ) leads
to
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X�1
n�1

an sin
npx
l
� j�x�, �30�

which requires

an � 2

l

�l
0

j�x� sin
npx
l

dx, n � 1, 2, . . . : �31�

Also,

Tt�x, t� �
X�1
n�1

�
ÿ 1

2t0
eÿ�t=2t0��an cos gnt

� bn sin gnt� � eÿ�t=2t0��ÿangn sin gnt

� bngn cos gnt�
�

sin
npx
l
:

�32�

Applying the second initial condition Tt (x, 0)=0
yields

X�1
n�1

�
ÿ 1

2t0
an � bngn

�
sin

npx
l
� 0, �33�

which requires

bn � an
2t0gn

: �34�

Finally, we have

T2�x, t� �
X�1
n�1

 
2

l

�l
0

j�x� sin
npx
l

dx

!
eÿ�t=2t0� cos

gnt sin
npx
l
�
X�1
n�1

 
1

lgnt0

�l
0

j�x� sin
npx
l

dx

!

eÿ�t=2t0� sin gnt sin
npx
l
:

�35�

3.1.3. The f-initiated solution: T3(x, t )

Consider the problem8>>>><>>>>:
Tt

t0
� Ttt � a2Txx � f �x, t�; �0, l � � �0, �1�

T�0, t� � T�l, t� � 0; �0, �1�
T�x, 0� � 0, Tt�x, 0� � 0; �0, l �,

�36�

which governs the contribution of the source term f.
Using the Fourier sine series to express the f as

f �x, t� �
X�1
n�1

fn�t� sin
npx
l

, �37�

where

fn�t� � 2

l

�l
0

f �x, t� sin
npx
l

dx: �38�

Let

T�x, t� �
X�1
n�1

Tn�t� sin
npx
l
: �39�

Such a solution satis®es two boundary conditions in
(36). A substitution of (37) and (39) into (36) yields

T 0n�t�
t0
� T 00n �t� �

�
npa
l

�2

Tn�t� � fn�t�, �40�

and

Tn�0� � T 0n�0� � 0: �41�

The solution of (40) can be, by (15) and the method of
variable coe�cients, written as

Tn�t� � c
�n�
1 �t�y1 � c

�n�
2 y2, �42�

where

y1 � eÿ�t=2t0� cos gnt, �43�

y2 � eÿ�t=2t0� sin gnt, �44�

c�n�1 �t� �
�
ÿ fn�t�y2

D
dt� c1, �45�

c�n�2 �t� �
�
fn�t�y1
D

dt� c2: �46�

Here c1 and c2 are constants, and

D �
���� y1 y2
y 01 y 02

���� � gn eÿ�t=t0�: �47�

By Tn(0)=0, we have

c
�n�
1 �0� � 0: �48�

Therefore,

c�n�1 �t� �
�
ÿ fn�t�y2

D
dt� c1

�
�
ÿ fn�t� eÿ�t=2t0� sin gnt

gn eÿ�t=t0�
dt� c1

� ÿ 1

gn

�
fn�t� eÿ�t=2t0� sin gnt dt� c1

� ÿ 1

gn

�t
0

fn�t� eÿ�t=2t0� sin gnt dt,

�49�
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and

T 0n�t� � �c�n�1 �t�� 0y1 � c�n�1 �t�y 01 � �c�n�2 �t�� 0y2 � c�n�2 �t�y 02

�
 
ÿ 1

gn
fn�t� eÿ�t=2t0� sin gnt

!
y1

� c
�n�
1 �t�y 01 � �c�n�2 �t�� 0y2 � c

�n�
2 �t�

eÿ�t=2t0�
�
ÿ 1

2t0
sin gnt� gn cos gnt

�
:

Applying T 'n(0)=0 leads to

c
�n�
2 �0� � 0: �50�

Hence,

c
�n�
2 �t� �

�
fn�t�y1
D

dt� c2

�
�
fn�t� eÿ�t=2t0� cos gnt

gn eÿ�t=t0�
dt� c2 � 1

gn

�t
0

fn�t�

e�t=2t0� cos gnt dt:

�51�

Substituting (49) and (51) into (42) yields

Tn�t� � eÿ�t=2t0� cos gnt

 
ÿ 1

gn

�t
0

fn�t� e�t=2t0� sin

gnt dt

!
� eÿ�t=2t0� sin gnt

 
1

gn

�t
0

fn�t� e�t=2t0� cos

gnt dt

!
� ÿ 1

gn

�t
0

eÿ��tÿt�=2t0 �
1

2
� sin

gn�t� t� � sin gn�tÿ t��fn�t�dt

� 1

gn

�t
0

eÿ��tÿt�=2t0 �
1

2
� sin gn�t� t�

� sin gn�tÿ t��fn�t�dt � 1

gn

�t
0

eÿ��tÿt�=2t0 � sin

gn�tÿ t� fn�t�dt � 2

lgn

�l
0

dx
�t
0

eÿ��tÿt�=2t0� sin

gn�tÿ t� sin
npx
l

f �x, t�dt,

�52�

in which (38) has been used.

Finally, substituting (52) into (39) leads to

T�x, t� �
�l
0

dx
�t
0

G�x, x, tÿ t� f �x, t�dt, �53�

in which,

G�x, x, tÿ t�

� 2

l

X�1
n�1

1

gn
eÿ��tÿt�=2t0� sin

npx
l

sin
npx
l

sin gn�tÿ t�,
�54�

is termed as the fundamental solution of (36). When

f �x, t� � d�xÿ x 0, tÿ t0�,

T�x, t� � G�x, x 0, tÿ t0�:

3.2. The solution by two theorems

3.2.1. The j-initiated solution: T2(x, t )
By applying Theorem 1 to this one-dimensional

problem,

T2�x, t� �
�
1

t0
� @

@ t

�
Wj�x, t�: �55�

Using the W in (26), we have

T2�x, t� �
X�1
n�1

eÿ�t=2t0� sin

gnt sin
npx
l

 
2

lgnt0

�l
0

j�x� sin
npx
l

dx

!

�
X�1
n�1

eÿ�t=2t0�
�
ÿ 1

2t0
sin gnt� gn cos

gnt
�

sin
npx
l

 
2

lgn

�l
0

j�x� sin
npx
l

dx

!

�
X�1
n�1

 
2

l

�l
0

j�x� sin
npx
l

dx

!
eÿ�t=2t0� cos

gnt sin
npx
l
�
X�1
n�1

 
1

lgnt0

�l
0

j�x� sin
npx
l

dx

!

eÿ�t=2t0� sin gnt sin
npx
l

, �56�
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which is the same as that obtained by the Fourier
method [Eq. (35)].

3.2.2. The f-initiated solution: T3(x, t )
By applying Theorem 2,

T3�x, t� �
�t
0

Wft �x, tÿ t�dt, �57�

where

ft � f �x, t�:

Using the W in (26), we have

T3�x, t� �
�t
0

"X�1
n�1

 
2

lgn

�l
0

f �x,

t� sin
npx
l

dx

!
eÿ��tÿt�=2t0� sin

gn�tÿ t� sin
npx
l

#
dt �

�l
0

dx
�t
0

G�x, x, tÿ t� f �x,

t�dt,

�58�

with the G(x, x, tÿt ) de®ned by (54). This is the same
as that obtained by the Fourier method [Eq. (53)].

4. Concluding remarks

The principle of superposition decomposes the sol-
ution of hyperbolic heat conduction described by (2)
into three parts T1(M, t ), T2(M, t ) and T3(M, t ),

representing the contribution of c, j and f, respect-
ively. Two theorems developed in this paper related
the T2 and T3 to the T1. This reduces the solution of

(2) to that of a much simpler problem (4) and relates
heat waves due to the initial temperature distribution
j and source disturbance f to that by the initial rate of

temperature change c. The two theorems are further il-
lustrated and justi®ed through ®nding the solution of
one-dimensional initial-boundary value problems with

a homogeneous Dirichlet boundary condition.
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